ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จากเซตหนึ่งที่เรียกว่าโดเมน ไปยังอีกเซตหนึ่งที่เรียกว่าโคโดเมน (บางครั้งคำว่าเรนจ์อาจถูกใช้แทน แต่เรนจ์นั้นมีความหมายอื่นด้วย "โคโดเมน" จึงเป็นที่นิยมมากกว่า เพราะไม่กำกวม) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ อ่านเพิ่มเติม
คณิตศาสตร์
วันพุธที่ 2 สิงหาคม พ.ศ. 2560
ความสัมพันธ์และฟังก์ชัน
คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d อ่านเพิ่มเติม
ค่าสัมบูรณ์ของจำนวนจริง
ค่าสมบูรณ์ของจำวนจริง a : เมื่อกำหนดให้ a เป็นจำนวนจริงระยะจากจุด 0 ถึงจุดที่แทนที่จำนวนจริง a เขียนแทนด้วย |a|
เช่น |2| หมายถึง ระยะจากจุด 0 ถึงจุดที่แทนจำนวน 2 ซึ่งเท่ากับ 2 หน่วย
|-2| หมายถึง ระยะจุด 0 ถึงจุดที่แทนจำนวน -2 ซึ่งเท่ากับ 2 หน่วย อ่านเพิ่มเติม
เช่น |2| หมายถึง ระยะจากจุด 0 ถึงจุดที่แทนจำนวน 2 ซึ่งเท่ากับ 2 หน่วย
|-2| หมายถึง ระยะจุด 0 ถึงจุดที่แทนจำนวน -2 ซึ่งเท่ากับ 2 หน่วย อ่านเพิ่มเติม
การไม่เท่ากัน
การเท่ากันในระบบจำนวนจริงมีสมบัติพื้นฐาน ดังนี้
1. สมบัติการสะท้อน
ถ้า a เป็นจำนวนจริงใด ๆ แล้ว a = a
เช่น 3 = 3
2. สมบัติการสมมาตร
เมื่อ a และ b เป็นจำนวนจริงใด ๆ ถ้า a = b แล้ว b = a
เช่น ถ้า 3 + 4 = 7 แล้ว 7 = 3 + 4 อ่านเพิ่มเติม
สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้
จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ อ่านเพิ่มเติม
จำนวนจริง
มีหลักเกณฑ์ในการแบ่งจำนวนจริงอยู่หลายเกณฑ์ เช่น จำนวนตรรกยะ หรือ จำนวนอตรรกยะ; จำนวนพีชคณิต (algebraic number) หรือ จำนวนอดิศัย; และ จำนวนบวก จำนวนลบ หรือ ศูนย์
จำนวนจริงแทนปริมาณที่ต่อเนื่องกัน โดยทฤษฎีอาจแทนได้ด้วยทศนิยมไม่รู้จบ และมักจะเขียนในรูปเช่น 324.823211247… จุดสามจุด ระบุว่ายังมีหลักต่อ ๆ ไปอีก ไม่ว่าจะยาวเพียงใดก็ตาม
การวัดในวิทยาศาสตร์กายภาพเกือบทั้งหมดจะเป็นการประมาณค่าสู่จำนวนจริง การเขียนในรูปทศนิยม (ซึ่งเป็นจำนวนตรรกยะที่สามารถเขียนเป็นอัตราส่วนที่มีตัวส่วนชัดเจน) ไม่เพียงแต่ทำให้กระชับ แต่ยังทำให้สามารถเข้าใจถึงจำนวนจริงที่แทนได้ในระดับหนึ่งอีกด้วย อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)